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Measures as tensors

Tensors are multilinear maps that can be identified with m-way arrays. A
pure tensor e1i1 ⊗ · · · ⊗ emim acts as

Rr1 × · · · × Rrm −→ R

(e1j1 , . . . , e
m
jm

) 7→

{
1 if (j1, . . . , jm) = (i1, . . . , im),

0, otherwise

For discrete r.v.s Xi ∈ Xi = {0, . . . , ri − 1}, i = 1, . . . ,m
The p.m.f. p = (p(x))x∈X of X can be then identified with a point

p(x) = P(X1 = x1, . . . , Xm = xm) ∈ RX :=

m⊗
i=1

RXi ,

whose projectivized space can be identified with the m− 1 dimensional
simplex

∆X := {p ∈ RX : px ≥ 0,
∑
x∈X

px = 1}.
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Independence model

The discrete random vector X = (X1, . . . , Xm) ∈ X = X1 × · · · × Xm

satisfies the full independence model if p ∈ ∆X can be written
for all x = (i1, . . . , im) ∈ X as a (pure) tensor product

pi1i2···im = p1i1p
2
i2 · · · p

m
im = p1 ⊗ · · · ⊗ pm.

Seg
(
PX1
R × · · · × PXm

R

)
⊂ PX

R = Proj
(
RX1 ⊗ · · · ⊗ RXm

)
,

which correspond to semialgebraic constraints. As an example with two
variables X1, X2:

p = p1 ⊗ p2 =

 p10
...

p1r1−1


(
p20 · · · p2r2−1

)
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Moment Tensors

For u = (u1, . . . , um) ∈ Nm and a vector x = (x1, . . . , xm) ∈ X define the
monomial

µu = EXu =
∑
x∈X

pxx
u, xu = xu1

1 · · ·xum
m ,

which is a moment of order k if k = u1 + · · ·+ um. Setting u = (0, . . . , 0)
we recover the p.m.f. condition µ0···0 = 1.

In the binary case (X1, X2) ∈ {0, 1}2. We have
µ00 = p00 + p01 + p10 + p11 = 1, µ10 = p10 + p11, µ01 = p01 + p11,
µ11 = p11.

The corresponding cumulants are given by the transformation κ00 = 0,
κ10 = µ10, κ01 = µ01, and κ11 = µ11 − µ10µ01.

=⇒ Independence model is given by κ11 = 0. For the study of binary
cumulant varieties see (Sturmfels and Zwiernik, 2013).
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Remark (Absolutely continuous measures)

The absolutely continuous case is also possible, where the moment tensors
are symmetric (McCullagh, 2018):

µi1···ir(X) = EXi1 · · ·Xir =
∂r

∂si1 · · · ∂sir
MX(s)

∣∣∣
s=0

,

κi1···ir(X) = cum(Xi1 , . . . , Xir) =
∂r

∂si1 · · · ∂sir
logMX(s)

∣∣∣
s=0

.

X Gaussian ⇐⇒ κX(s) = µ⊤s+
1

2
s⊤Σs.

Useful for multivariate Gaussian models Nm(µ,Σ), where conditional
independences correspond to linear restrictions

(
Σ−1

)
ij
= 0 (Uhler, 2017).
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Luis Sierra Muntané (UofT) Tensors in Algebraic Statistics 15th May ’25 5 / 14



Tensor rank

An n1 × n2 matrix has rank ≤ k if

M = u1 ⊗ v1 + · · ·+ uk ⊗ vk, for ui ∈ Rn1 , vi ∈ Rn2 .

An m-way tensor has rank ≤ k if

T =

k∑
j=1

u1,j ⊗ u2,j ⊗ · · · ⊗ um,j .

We say the rank is nonnegative if ui,j ∈ Rri
≥0; rank(T ) ≤ rank+(T ).

Finding such a decomposition is NP-hard! (Hillar and Lim, 2013)
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Naive Bayes

Consider the m-variate the dataset {(X1, . . . , Xm)} with Xi ∈ Xi = [ri],
where each point belongs to the class H ∈ C = [k].

Making the
assumption

Xi ⊥⊥ Xj |H, ∀i, j ∈ [m]

P(H = h |X = x) ∝ p(h)

m∏
i=1

P(Xi = xi |H = h)

H

X1 X2 X3
. . . Xm
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Naive Bayes II

Since the Xi are discrete, we can encode the conditionals as

ui,h = (P(Xi = 0 |h), . . . ,P(Xi = ri − 1 |h)) ∈ RXi ,

and then the marginal over the observables is naturally given as a tensor

P(X = x) =
∑
h∈C

p(h) · u1,h ⊗ · · · ⊗ um,h,

whose nonnegative rank is therefore no larger than k.
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Phylogenetic Trees

human

chimpanzee

gorilla

orangutan

Me1

Me2

Me3

Me4

Me5

r

Consider species as vertices of a directed tree T = (V,E), m = |L| leaves,
deg(v) > 2 for u ∈ V \ L, with nucleotides Xu = {A, C, G, T} .

ACGTGACTGATCAGCTGACT

ACGTTACTGATCAGCTGACT

Me

M e
x,y = P(Xv = y |Xu = x) are transition matrices for e = {u → v}.
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Phylogenetic Trees II

P
(
{xv}v∈V

)
= P(xr)

∏
e={u→w}∈E

M e
xw,xu

,

since all interior nodes are latent, and marginalizing over them realizes a
tensor

pT ∈ RX = R4 ⊗ m. . .⊗ R4,

so that the leaf nucleotides follow the distribution

pi1...in =
∑

{xv}v∈V |xj={A,C,G,T},j∈[m]

P({xv}v∈V ).

Now consider a split of the leaves L = A ⊔B

RX ∼= RXA ⊗ RXB −→ M|XA|×|XB |(R)
p = (px1...xn) 7→ flattA|B(p),

where the matrix flattA|B(p) has entries P(XA = xA, XB = xB).
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Phylogenetic Trees II

human

chimpanzee

gorilla

orangutan

Me1

Me2

Me3

Me4

Me5

r

Denoting L = {human, chimpanzee, gorilla, orangutan} by {1, 2, 3, 4}, the
flattened tensor is given by

flatt12|34(p) =


p0000 p0001 p0002 . . . p0033
p0100 p0101 p0102 . . . p0133
p0200 p0201 p0202 . . . p0233
...

...
...

. . .
...

p3300 p3301 p3302 . . . p3333

 .

=⇒ This is a Naive Bayes model with m = 2,
=⇒ pT has (nonnegative) rank at most 4,
=⇒ flattA|B(pT ) has matrix rank at most 4.
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Phylogenetic Trees III

Theorem (Allman and Rhodes (2008))

For T a phylogenetic tree and A|B a split of its leaves L, let pT be the
tensor distribution obtained from a Markov process on T . Then, assuming
some genericity conditions

1. If A|B is an edge split, flattA|B(pT ) has rank less than or equal to 4.

2. If A|B is not an edge split, the rank of flattA|B(pT ) is larger than 4

Identifiability of tensor models (Allman et al., 2009), applications to
genomic reconstruction (Fernández-Sánchez and Casanellas, 2016).
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Mixture Models

From a family of distributions P we can construct the mixture model

Mixtk (P) =

{
k∑

i=1

πip
i : π ∈ ∆k−1, pi ∈ P

}
.

Upon taking the Zariski closure, mixtures models in statistics correspond
to join varieties and secant varieties in algebraic geometry.

Examples: Gaussian mixtures, topic models, Latent Dirichlet Allocation
(LDA) etc.

Model fitting: EM algorithm Dempster et al. (1977).
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Challenges and Remarks

• The Best Low-Rank Approximation Problem is ill-posed.

• Most Tensor problems are NP-hard Hillar and Lim (2013).

Average case polynomial-time heuristics being developed.

• algstat R package for algebraic statistics.

• Alpha tensor by Google DeepMind for tensor decompositions.
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