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Measures as tensors
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Measures as tensors

Tensors are multilinear maps that can be identified with m-way arrays. A
pure tensor 3111 ®---®ej" acts as
R x...xR™ — R

ey [T G ) = (i),
T m 0, otherwise

Luis Sierra Muntané (UofT) Tensors in Algebraic Statistics 15th May '25



Measures as tensors

Tensors are multilinear maps that can be identified with m-way arrays. A
pure tensor 3111 ®---®ej" acts as

R x--xRm — R

(e T {1 it 1y gm) = (i1s -+ im),

€r ... e )
7 Jm 0, otherwise

For discrete rv.s X; € X; ={0,...,m; —1},i=1,...,m
The p.m.f. p = (p(x)),exr of X can be then identified with a point

pl@) =P(X1=a1,...,Xm =) € RY := ®RX
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Measures as tensors

Tensors are multilinear maps that can be identified with m-way arrays. A
pure tensor 3111 ®---®ej" acts as

R x-.-xR'™ —s R
. my {1 it 1y gm) = (i1s -+ im),

€r ... e )
7 Jm 0, otherwise

For discrete rv.s X; € X; ={0,...,m; —1},i=1,...,m
The p.m.f. p = (p(x)),exr of X can be then identified with a point

pl@) =P(X1=a1,...,Xm =) € RY := ®RX

whose projectivized space can be identified with the m — 1 dimensional
simplex

AY = {peRY: meO,mezl}.
zeX
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Independence model
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Independence model

The discrete random vector X = (X1,...,X;n) € X =& x -+ x A,
satisfies the full independence model if p € A% can be written
for all x = (i1,...,%m) € X as a (pure) tensor product
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Independence model

The discrete random vector X = (X1,...,X;n) € X =& x -+ x A,
satisfies the full independence model if p € A% can be written
for all x = (i1,...,%m) € X as a (pure) tensor product

_ 1,2 m
DPivig-im = PiyPiy """ Py
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Independence model

The discrete random vector X = (X1,...,X;n) € X =& x -+ x A,
satisfies the full independence model if p € A% can be written
for all x = (i1,...,%m) € X as a (pure) tensor product

pil’iQ"'im — p211p122 .o p?:;l — pl ® P ®pm
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Independence model

The discrete random vector X = (X1,...,X;n) € X =& x -+ x A,
satisfies the full independence model if p € A% can be written
for all x = (i1,...,%m) € X as a (pure) tensor product

pi1i2~~~im — pzllpf2 .o pl?n — pl ® P ®pm

Seg (PR x -+ x PE") € PF = Proj (RY -+ @ RY"),

which correspond to semialgebraic constraints.
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Independence model

The discrete random vector X = (X1,...,X;n) € X =& x -+ x A,
satisfies the full independence model if p € A% can be written
for all x = (i1,...,%m) € X as a (pure) tensor product

pi1i2~~~im — pzllpf2 .o pl?n — pl ® P ®pm
Seg (PR x -+ x PE") € PF = Proj (RY -+ @ RY"),

which correspond to semialgebraic constraints. As an example with two
variables X1, X5:
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Independence model

The discrete random vector X = (X1,...,X;n) € X =& x -+ x A,
satisfies the full independence model if p € A% can be written
for all x = (i1,...,%m) € X as a (pure) tensor product

pi1i2~~~im — pzllpf2 .o pZ"n — pl ® P ®pm

Seg (PR x -+ x PE") € PF = Proj (RY -+ @ RY"),
which correspond to semialgebraic constraints. As an example with two
variables X1, X5:

1
R A A
p=p @p° =
P71~1—1
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Mo sors

For u = (u1,...,um) € N™ and a vector z = (z1,...,zn) € X define the
monomial
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Moment Tensors

For u = (u1,...,um) € N™ and a vector z = (z1,...,zn) € X define the
monomial

py =EX" = Pz, T :xll"'xmmv
zeX

which is a moment of order k if k = uj + - - - + uy,. Setting u = (0,...,0)
we recover the p.m.f. condition pg..q = 1.
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Moment Tensors

For u = (u1,...,um) € N and a vector z = (z1,...,%m) € X define the
monomial
py, =EXY = pras“, gt =zt
zeX
which is a moment of order k if k = uj + -+ + uy,. Setting u = (0,...,0)
we recover the p.m.f. condition pg..q = 1.

In the binary case (X1, X2) € {0,1}2. We have
100 = Poo + po1 + p1o +p11 = 1, p1o = p1o + P11, Ho1 = po1 + P11,
Hi1 = pi1-
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Moment Tensors

For u = (u1,...,um) € N and a vector z = (z1,...,%m) € X define the
monomial
py, =EXY = pras“, gt =zt
zeX
which is a moment of order k if k = uj + -+ + uy,. Setting u = (0,...,0)
we recover the p.m.f. condition pg..q = 1.

In the binary case (X1, X2) € {0,1}2. We have
100 = Poo + po1 + p1o +p11 = 1, p1o = p1o + P11, Ho1 = po1 + P11,
Hi1 = pi1-

The corresponding cumulants are given by the transformation kg9 = 0,
K10 = (10, K01 = Ho1, and K11 = p11 — H1oH01-
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Moment Tensors

For u = (u1,...,um) € N and a vector z = (z1,...,%m) € X define the
monomial
py, =EXY = pras“, gt =zt
zeX
which is a moment of order k if k = uj + -+ + uy,. Setting u = (0,...,0)
we recover the p.m.f. condition pg..q = 1.

In the binary case (X1, X2) € {0,1}2. We have
100 = Poo + po1 + p1o +p11 = 1, p1o = p1o + P11, Ho1 = po1 + P11,
Hi1 = pi1-

The corresponding cumulants are given by the transformation kg9 = 0,
K10 = (10, K01 = Ho1, and K11 = p11 — H1oH01-

—> Independence model is given by k11 = 0. For the study of binary
cumulant varieties see (Sturmfels and Zwiernik, 2013).
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Remark (Absolutely continuous measures)

The absolutely continuous case is also possible, where the moment tensors
are symmetric (McCullagh, 2018):

© Osi, - 05,

r

l’l‘il"‘ir(X) = EXZ‘ s Xi,« Mx(s)

)

s=0

Kiyoin(X) = cum(X;,, ..., X;,) —log Mx(s)

8si1 cee 88“

s=0 '
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Remark (Absolutely continuous measures)

The absolutely continuous case is also possible, where the moment tensors
are symmetric (McCullagh, 2018):

81"

i (X)=EX; - Xj, = ———
Iu’l r( ) s 83i1"'85ir

Mx(s)

)

s=0

r

Kiyoin(X) = cum(X;,, ..., X;,) —log Mx(s)

8si1 cee 88“

s=0 '

1
X Gaussian <= rx(s)=p's+ ESTZS.
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Remark (Absolutely continuous measures)

The absolutely continuous case is also possible, where the moment tensors
are symmetric (McCullagh, 2018):

81"

i (X)=EX;, - X;, = —
H’l r( ) T 881'1"'857;,,

Mx(s)

)

s=0

r

Kiyoin(X) = cum(X;,, ..., X;,) —log Mx(s)

8Si1 cee 88“

s=0 '

1
X Gaussian <= rx(s)=p's+ ESTZS.

Useful for multivariate Gaussian models N, (11, ), where conditional
independences correspond to linear restrictions (Eil)ij =0 (Uhler, 2017).
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Tensor rank

An nq X ng matrix has rank < k if

M=u @+ - +uF @0k foru’ e R™, vi € R,
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Tensor rank

An nq X ng matrix has rank < k if
M=u @+ - +uF @0k foru’ e R™, vi € R,
An m-way tensor has rank < k if

k
T: Zuld ®u27j®_.,®um7j'
=1
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Tensor rank

An nq X ng matrix has rank < k if
M=u @+ - +uF @0k foru’ e R™, vi € R,
An m-way tensor has rank < k if
k
T=> uoule -ou™.
j=1

We say the rank is nonnegative if u™/ € RY; rank(T) < rank, (T).
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Tensor rank

An nq X ng matrix has rank < k if
M=u @+ - +uF @0k foru’ e R™, vi € R,

An m-way tensor has rank < k if

k
T: Zuld ®u27j®..,®um7j'
=1

We say the rank is nonnegative if u™/ € RY; rank(T) < rank, (T).

Finding such a decomposition is NP-hard! (Hillar and Lim, 2013)
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Consider the m-variate the dataset {(X1,...,X;n)} with X; € &; = [ry],
where each point belongs to the class H € C = [k].
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Consider the m-variate the dataset {(X1,...,X;n)} with X; € &; = [ry],

where each point belongs to the class H € C = [k]. Making the
assumption

XiJLXj|H, VZ,]E[TTL]
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Consider the m-variate the dataset {(X1,..., X,,)} with X; € &; = [ry],
where each point belongs to the class H € C = [k]. Making the
assumption

XiJLXj|H, VZ,]E[m]

m

P(H =h|X =z) o p(h) [ [P(Xi = 2: | H = h)
=1
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Naive Bayes

Consider the m-variate the dataset {(X1,..., X,,)} with X; € &; = [ry],

where each point belongs to the class H € C = [k]. Making the
assumption

XiJLXj|H, VZ,]E[m]

m

P(H =h|X =z) o p(h) [ [P(Xi = 2: | H = h)
=1

ORONCO
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Naive Bayes Il

Since the X are discrete, we can encode the conditionals as

u' = (P(X; =0|h),...,P(X; =r; — 1|h)) € RY,
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Naive Bayes Il

Since the X are discrete, we can encode the conditionals as
bh— (P(X; = 0| h P(X; =7, —1|h)) € RY
u"" = (P(X; =0[h),....,P(X; =r; —1|h)) € R™,
and then the marginal over the observables is naturally given as a tensor

P(X =z)=) ph)-u"& - cu™,
heC

whose nonnegative rank is therefore no larger than k.
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Phylogenetic Trees

human gorilla
Mer A€ ‘M e3
M2 /" Mes
chimpanzee orangutan

Consider species as vertices of a directed tree T = (V, E), m = |L| leaves,
deg(v) > 2 for w € V '\ L, with nucleotides X,, = {A,C,G,T}.
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Phylogenetic Trees

human gorilla
Mer A€ ‘M e3
M2 /" Mes
chimpanzee orangutan

Consider species as vertices of a directed tree T = (V, E), m = |L| leaves,
deg(v) > 2 for w € V '\ L, with nucleotides X,, = {A,C,G,T}.

ACGTGACTGATCAGCTGACT

[or

ACGTTACTGATCAGCTGACT

Mg, =P(X, =y| X, = z) are transition matrices for e = {u — v}.
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Phylogenetic Trees Il

P({zolpey) =Pl@) ] M, ..

e={u—w}eE

since all interior nodes are latent, and marginalizing over them realizes a
tensor
pr e RY =R*@ m @ RY,
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Phylogenetic Trees Il

P({zolpey) =Pl@) ] M, ..

e={u—w}eE

since all interior nodes are latent, and marginalizing over them realizes a
tensor

pr e RY =R*@ m @ RY,
so that the leaf nucleotides follow the distribution

Diy.in, = Z P({@v}vev).

{mv}uEV | CI)j:{A,C,G,T},jE [m]
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Phylogenetic Trees Il

P({zolpey) =Pl@) ] M, ..

e={u—w}eE

since all interior nodes are latent, and marginalizing over them realizes a
tensor

preRY =R*@ m @R,
so that the leaf nucleotides follow the distribution
Diy.in = Z P({zv}vev)-
{mv}’UEV| Ij:{A,C,G,T},jE[m]

Now consider a split of the leaves L = AU B

RY 2 RY¥ g RYs M2, x5 (R)
p= (Pei..w,) + Mattyp(p),

where the matrix flatt 4 g(p) has entries P(X4 = 74, Xp = ).
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Phylogenetic Trees Il

Luis Sierra Muntané (UofT)

human gorilla
Mer Mes Me3
Me2 r Me4
chimpanzee orangutan

Tensors in Algebraic Statistics 15th May '25



Phylogenetic Trees Il

human gorilla
Mer Mes Me3
M52 r Me4
chimpanzee orangutan

Denoting L = {human, chimpanzee, gorilla, orangutan} by {1,2,3,4}, the
flattened tensor is given by

Pooo0  Poool  Pooo2  ---  P0033
Poioo Poior Po102 ---  Po0133
flattig34(p) = | P0200 Po201 Po202 ---  P0233
P3300 P3301 P3302 --- P3333
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Phylogenetic Trees Il

human gorilla
Mer Mes Me3
M52 r Me4
chimpanzee orangutan

Denoting L = {human, chimpanzee, gorilla, orangutan} by {1,2,3,4}, the
flattened tensor is given by

Pooo0  Poool  Pooo2  ---  P0033
Poioo Poior Po102 ---  Po0133
flattig34(p) = | P0200 Po201 Po202 ---  P0233
P3300 P3301 P3302 --- P3333

= This is a Naive Bayes model with m = 2,

Luis Sierra Muntané (UofT) Tensors in Algebraic Statistics 15th May '25



Phylogenetic Trees Il

human gorilla
Mer Mes Me3
M52 r Me4
chimpanzee orangutan

Denoting L = {human, chimpanzee, gorilla, orangutan} by {1,2,3,4}, the
flattened tensor is given by

Pooo0  Poool  Pooo2  ---  P0033
Poioo Poior Po102 ---  Po0133
flattig34(p) = | P0200 Po201 Po202 ---  P0233
P3300 P3301 P3302 --- P3333

= This is a Naive Bayes model with m = 2,
= pg has (nonnegative) rank at most 4,
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Phylogenetic Trees Il

human gorilla
Mer Mes Me3
M52 r Me4
chimpanzee orangutan

Denoting L = {human, chimpanzee, gorilla, orangutan} by {1,2,3,4}, the
flattened tensor is given by

Poooo  Poool  Pooo2  ---  P0033
Poioo Poior Poi1o2 ---  P0133
flattig34(p) = | P0200 Po201 Po202 ---  P0233
P3300 P3301 P3302 --- DP3333

= This is a Naive Bayes model with m = 2,
= pg has (nonnegative) rank at most 4,
= flatt 4 p(p7) has matrix rank at most 4.
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Phylogenetic Trees Il

For T a phylogenetic tree and A|B a split of its leaves L, let pr be the
tensor distribution obtained from a Markov process on T. Then, assuming
some genericity conditions

L. If A|B is an edge split, flatt 4, g(p7) has rank less than or equal to 4.
2. If A|B is not an edge split, the rank of flatt 4 g(p7) is larger than 4

v

Identifiability of tensor models (Allman et al., 2009), applications to
genomic reconstruction (Ferndndez-Sanchez and Casanellas, 2016).
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Mixture Models

From a family of distributions P we can construct the mixture model
k
Mixt® (P) = {Zmp’ cme AL pie 73} .
i=1

Upon taking the Zariski closure, mixtures models in statistics correspond
to join varieties and secant varieties in algebraic geometry.

Examples: Gaussian mixtures, topic models, Latent Dirichlet Allocation
(LDA) etc.

Model fitting: EM algorithm Dempster et al. (1977).
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Challenges and Remarks

e The Best Low-Rank Approximation Problem is ill-posed.
e Most Tensor problems are NP-hard Hillar and Lim (2013).
o Average case polynomial-time heuristics being developed.
e algstat R package for algebraic statistics.

e Alpha tensor by Google DeepMind for tensor decompositions.
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